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Abstract—Constrained nonlinear optimization problems can be
solved using penalty or barrier functions. This strategy, based on
solving unconstrained problems obtained form the original prob-
lem, has shown to be effective, particularly when used with direct
search methods. An alternative to solve the above mentioned
problems is the filters method. The filters method, introduced
by Fletcher and Leyffer in 2002, has been widely used to solve
constrained problems. These methods use a different strategy
when compared with penalty or barrier functions. The previous
functions define a new one that combine the objective function
and the constraints, while the filters method treat optimization
problems as bi-objective problems where the objective function
and a function that aggregates the constraints are optimized.
Based on the work of Audet and Dennis, using filters method with
derivative-free algorithms, the authors developed some works
where other direct search methods were used, combining their
potential with the filters method. More recently, a new variant of
these methods was presented, where some alternative aggregation
restrictions for the construction of filters were proposed. This
paper presents a variant of the filters method, more robust than
the previous ones, that has been implemented with a safeguard
procedure where values of the function and constraints are linked
together and are not treated as completely independently.

Index Terms—Constrained nonlinear optimization, Filters
method, Direct search methods.

I. INTRODUCTION
A constrained NonLinear Problem (NLP) can be presented
in the form:
f(@)

ci(zr)=0,ie€é& (1)
ci(x) <0,i €}

min
s.t.

where, z € R™, f is the objective function, ¢;(z) =0, ¢ €
&, with & = {1,2,...,t}, define the equality constraints and
ci(r) <0,i€Z,withZ={t+1,t+2,...,m} represent the
inequality constraints.

Pedro Mestre Carlos Serddio

CITAB CITAB, Algoritmi
UTAD UTAD
Vila Real, Portugal Vila Real, Portugal
pmestre @utad.pt cserodio@utad.pt

of derivative-free methods, more precisely, deterministic direct
search methods, i.e., methods that only need and use informa-
tion about the objective and constraints functions values to
find the next iteration.

To deal with the constraints, using the most well known
direct search methods (which are unconstrained optimization
methods), we need some degree of constraints manipulation.
The most frequent techniques are based in penalty or barrier
functions. More recently, the filter methods has proved to be
effective to deal with the information given by the constraints.

Unlike penalty and barrier methods, the filters method
considers the feasibility and optimality separately, using the
concept of dominance of multi-objective optimization. A filters
algorithm introduces a function that aggregates constraint
violations and constructs a bi-objective problem. It attempts
to minimize simultaneously that function (feasibility) and the
objective function (optimality), giving priority to the feasibility
at least until a feasible iterate is found.

In short, we can say that in the resolution of a problem
we have two objectives: minimize the objective function
(Optimality) and minimize the constraints violation, which
must be zero or tend to zero (Viability).

First filters method for derivative-free nonlinear program-
ming was presented by Audet and Dennis, [4]. This method is
based on pattern search methods. Motivated by this work the
authors have developed a method that combines the features of
the simplex method and filters method, [1]-[3]. The promising
results that were obtained with this method encouraged the
development of more features of the method, namely the
combination of filters method with other direct search un-
constrained optimization methods and the definition of other
techniques to aggregate the constraint violation functions. This

We can define @ = {zx € R" : ¢; =0, i € € A ¢i(x) <0 4€l} study was presented in[5].

as the set of all feasible points, i.e., the feasible region.
When the objective function and/or the constraints functions

are not smooth, non continuous, it is not possible to use

derivative-based methods. In these cases, we propose the use
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In this paper, the fundamental concepts that allowed us
to make this work, using the results obtained in [5], as a
comparison with other implementations of the filters method,
are presented.

II. THEORETICAL CONCEPTS

A key component of the filters method is a non-negative
continuous function A  which aggregates the constraint
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violation functions. Then A is a function such that h(x) > 0
with h(x) =0 if and only if z is feasible.

This function is used in the definition of successive filters
along the iterative process, because a point is accepted in a
filter if and only if that point has better values of h or f
than the points found so far.

Another fundamental concept to the perception of the filter
method, is the dominance.

A point x € R" is said to dominate y € R", written x < y
f f(z) < f(y) and h(z) < h(y) or f(z) < f(y) or
h(z) < h(y) .

A filter, denoted by F, is a finite set of points in the domain
of f and h such that no point = in the set dominates other
point y in the set, i.e., there is no pair of points x and y in
the filter that have the relation = < y.

Figure 1, based on Correia et. al. [5] and Ribeiro et. al. [6],
depicts the concept of a filter with four initial points (a, b, c
and d).

h

(before)

(after) f

Fig. 1. Filters Method - Graphic Concept
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Points represented by a, b, ¢ and d define a boundary of the
forbidden region, presented in shaded. To the filter it should
be added the points with better (lower) values of f and h,
i.e. the aim is to have h = 0 and the lowest possible values
for f. Therefore the point represented by y, as it is inside the
forbidden region, will not be accepted in the filter. But the
point represented by z is out of the forbidden region and
therefore it will be included in the filter. The same applies
to the point represented by w , however, in this case, there
would still rise to the elimination of points represented by c
and d of the filter, since they are in the forbidden region
defined by w,i.e., ¢ and d are dominated by w .

Now follows another concept that is also important.

It is considered that a point z is filtered by a filter F if:

- There exists a point y € F such that y <x or y = x;

- or h(z) > hmazs

- or h(z)=0 and f(z)> fF;
where f% is the objective function value of the best feasible
point found so far and h,,4, is a previous defined bound for
h value, so each point 2 € F satisfies h(z) < Amaz-

III. FILTERS METHOD ALGORITHM

Based on the algorithms presented in [4], [6]-[8], defined
in a general manner, the authors have implemented and tested
several versions of the filters method ( [2] and [1]).

In these versions, the filters method was implemented in
combination with the Hooke and Jeeves method, a pattern
search method as Audet and Dennis and with Nelder-Mead
method. In [3] some improvements were presented and a
comparison was made of a new simplex filter algorithm with
the first version of the same method.

Numerical results obtained have motivated the generic im-
plementation of filters method, i.e. so that it can be applied
not only with Nelder-Mead and Hooke and Jeeves methods,
in optimization of h and f, as well as all available direct
search type methods. That was presented in [5].

The present work uses the procedure implemented in [5]
with changes, adaptations and generalizations of those meth-
ods.

While in previous work the filters method treats the optimal-
ity, optimization of f , completely isolated from admissibility,
optimization of h , in this work there is a link between them,
attempting that both processes not to be fully independent.

After some analysis, it was found that in the previous
implementation there could occur cases of alternating values
without obtaining convergence of the algorithm. This could
occur on an iteration of a process to obtain a value, from
which by the other process will obtain the the initial value.

The new implementation is depicted in Fig. 12 and the
explanations are noted below.

In order to compare in a correct way, the same test problems,
the same aggregate functions h , and the same direct testing
methods as described in [5] were used.
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Algorithm

The procedure begins with an initial
filter that contains the initial
iteration, Fy = 9. Then, it 1is constructed
an initial Set (Sy) containing n + 1
points from that iteration (xg) and:
Sk ={zrU{zr +e;,i=1,...,n}, where e;,i=1,..,n
represents the vectors of the canonic
basis in R", starting with the Search Set
1=0,..,n.

1) If the point under analysis is
feasible then its inclusion in the
filter is evaluated:

a) If
i) One of five unconstrained
optimization methods is
applied to the function Fj;

it is not accepted:

ii) A new point is obtained, xy;
ili) Go back to the construction
of the Set: S = {zx} U

{xk +e,1=1, "'7”};
b) If it is accepted:
i) Filter is updated with the new
approximation to the solution,
i.e., the new iteration;
If the stop criterion is
verified, this approximation
is the solution. Otherwise, go
back to the Set construction,
using this point.

ii)

2) If the point is an infeasible one,
its inclusion in the filter is
evaluated:

a) If it is not accepted:

i) One of five unconstrained
optimization methods is
applied to the function h;
A new point is obtained, xg;
Go back to the to the
construction of the
Set/Simplex Sk =
{zr+e,i=1,...,n};

b) If it is accepted:

i) The filter is updated with

the new approximation to

the solution, i.e., the new

iteration;

If the stop criterion is

verified, this approximation

is the solution. Otherwise, go
back to the Set construction,
using this point.

ii)

iif)

(-

{zr}

i)
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Thus, the method contains two distinct processes: the ex-
ternal iterative process, involving the Set construction and the
filter update and the internal iterative process, involving the
optimization of F' and h , where unconstrained optimization
problems are solved, with objective functions f or h, using
one of the Direct Search methods. These are de same methods
described in [5], with which performance comparisons were
made.

The main difference between this work and the one pre-
sented in [5] is the use of the F' function, instead of the
exclusively objective function f , from problem (1) as shown
in 1.(a)i. from the above procedure.

The idea behind this new implementation is to construct the
function F using not only the objective function f from
the initial problem (1), but also the function h that may be
used to aggregate constraint violations. This is illustrated in
the formulation of the problem (2), where F'(x) is defined
by F(z) = f(z) + nh(x) , resulting in the problem without
constraints

in F
min F(z),

2

where 7 is a positive factor.

As in [5], the same five methods were used in internal
process: Opportunistic Coordinate search method (CS); Hooke
and Jeeves method (HJ); A version of Audet et. al. method
(AA); Nelder-Mead method (NM) and a Convergent Simplex
method (SC). The first three are Pattern Search Methods or
Directional Direct-Search Methods.

The last two are Simplex Methods or Simplicial Direct-
Search Methods.

IV. AGGREGATE CONSTRAINT VIOLATION FUNCTIONS

Considering the problem (1) constraints, namely the ¢
equality constraints, which may be written as two inequality
constraints:

ci(z) =0, i=1,..,t &
& c(r) KON —¢i(z) <0, i=1
settle 2t + m = n, this can be rewritten defining:

ri(z) =c¢(x) <0, i=1,...,t

ri(z) = —c¢i(z) <0, j=t+1,..,2¢t

ri(z) =c(x) <0, j=2t+1,..,q

i=1,..,t
i=t+1,...m

the problem to solve will be:

min  f(z) . 3
st. ri(z)<0,i=1,..,q

To construct the h function (function that aggregate the
constraint violation) the norm 2 is usually used,

q
2
h(@) = 1C+ (@)l = 4 | 22 max (0,7 (z))",
The requirements for h are: be continuous and h(x)
with h(x) = 0 if and only if =z is feasible, i.e.,
must be a non negative continuous function which h(z) =
0 if and only if x is feasible. Therefore we propose the

>0
h
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ci(r) <0A¢(z) >0, i=1,..

I

t
Lt
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same alternatives presented in [5], to aggregate the constraint
violation functions, and in that way, we can compare properly
the obtained values.

The definitions of & wused to aggregate the constraint
violation functions, are presented in Table I.

V. USED PARAMETERS

In both processes, internal (Unconstrained Optimization
- Direct Search Methods) and external (Constrained Opti-
mization - Filters Method), it is necessary to choose some
parameters. Once again, to compare the values obtained with
those obtained in [5] same parameters were uses, where
possible. The used parameters are presented in Tables III and
IL.

VI. NUMERICAL RESULTS

The test problems are the same as used in [5] and were
selected from Schittkowski [9] and CUTE [10] collections.
The fifteen Schittkowski problems are: S224; S225; S226;
S227; S228; S231; S233; S234; S249; S264; S270; S323;
S324; S325 and S326 and of Cute collection were chosen
two test problems: C801 and C802. The last problem is the
PA problem presented in [2].

The choice of these eighteen test problems was not made in
accordance with any special requirement, they are only used
to illustrate the performance of the methods implemented.

In order to classify the solution approximations, we use the
same criteria used in [5], without using the Bad classification:

o a Feasible solution approximation if h(xy) =0, is:

- Good if:  |f(z*) — f(zx)] < 0.0001;
— Medium if:  0.0001 < |f(z*) — f(zx)| < 0.01;
e an Infeasible solution approximation if h(xy) # 0, is:
- Good if:  |f(x*) — f(xr)] < 0.0001 A h(zg) <
0.0001;
— Medium if:
x 0.0001 < |f(z*) — f(zx)] < 0.01 A
h(ay) < 0.0001;
£ or  |f(z*) — flzx)] <0.0001 A 0.0001 <
h(zxy) <0.01;
«or 00001 < |f(z%) — fzx)] < 0.01 A
0.0001 < h(zy) < 0.01;

All the obtained solution approximations were classified
using these criteria.

In the above tests, it can be shown an improvement in the
results, when compared with those presented in [5]. A table
which summarizes the obtained results are presented in the
left table of Fig. 2 and the differences to the results obtained
in [5] are presented in the table on the right.

An improvement on the results is noticed in almost all types
of solutions obtained above, i.e. in the good and medium ones,
and for almost all direct search methods and penalty functions.

In order to enable an easier data analysis, it iS present an
analysis for each method and for each penalty function, based
on right table of Fig. 2.
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IMethodsI

Solution Approximation

Feasible Infeasible
IP | EP |Good|Med |Total % Good|Med |Total| %
N1 6 6 33,3% 0 | 0,0%
cs N2 6 6 33,3% 0 0,0%
NEB| 7 7 38,9% 0 |0,0%
NP 3 3 16,7% 0 | 0,0%
N1 3 3 16,7% 2 2 |11,1%
H N2 3 1 4 22,2% 1 1 |56%
NEB] 4 2 6 33,3% 0 0,0%
NP 1 2 3 16,7% 2 2 |11,1%
N1 5 1 6 33,3% 1 1 |56%
AA N2 4 4 22,2% 1 1 |56%
NEB| 7 2 9 50,0% 0 |0,0%
NP 3 1 4 22,2% 2 2 |11,1%
N1 7 7 38,9% 1 1 |56%
NM N2 5 5 27,8% 1 1 |56%
NEB| 10 10 | 55,6% 0 | 0,0%
NP 3 2 5 27,8% 1 1 2 |11,1%
N1 5 2 7 38,9% 1 1 2 |11,1%
sc N2 7 1 8 44,4% 2 2 |11,1%
NEB| 7 7 38,9% 0 |0,0%
NP 4 2 6 33,3% 1 2 3 |16,7%
100 16 116 10 10 20
IMethods Solution Approximation
Feasible Infeasible
IP | EP |Good|Med |Total % Good|Med | Total| %
N1 4 0 4 22,2% 0 0 0 |0,0%
cs N2 4 0 4 22,2% -1 0 -1 |-5,6%
NEB] 6 0 6 33.3% 0 0 0 0,0%
NP 1 0 1 5,6% -1 0 -1 [-5,6%
N1 -2 0 -2 -11,1% 1 0 1 5,6%
HI N2 -2 1 -1 -5,6% -1 1 0 |0,0%
NEB] 2 2 4 22,2% 0 0 0 0,0%
NP | -3 2 -1 -5,6% -1 2 1 |56%
N1 4 1 5 27,8% 0 1 1 5,6%
AA N2 3 0 3 16,7% 0 1 1 5,6%
NEB| 5 2 7 38,9% 0 0 0 |0,0%
NP 2 1 3 16,7 % 0 0 0 0,0%
N1 5 0 5 27 ,8% 0 1 1 |56%
NM N2 3 0 3 16,7 % 0 0 0 0,0%
NEB| 8 0 8 44,4% 0 0 0 |0,0%
NP 1 2 3 16,7% 0 1 1 5,6%
N1 3 2 5 27,8% 0 1 1 |56%
sc N2 5 1 6 33,3% 0 0 0 |0,0%
NEB] 5 0 5 27.8% 0 0 0 0,0%
NP 2 2 4 22,2% 0 2 2 111,1%
56 16 72 -3 10 7

Fig. 2. Numerical Results
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Thus, starting with the direct search methods, we have the
results of the Coordinate Search method in Fig. 3. We can
observe the large increase in the number of feasible solutions
and a small decrease in infeasible solutions.

Methods Solution Approximation
Feasible Infeasible
1P EP | Good Med Total % Good | Med Total %
N1 4 0 4 222%] O 0 0 0,0%
cs N2 4 0 4 222%] -1 0 =1 -5,6%
NEB 6 0 6 33,3% 0 0 0 0,0%
NP 1 0 1 5,6% -1 0 -1 -5,6%
Total| 15 0 15 -2 0 -2
% ]16,7% 0,0% 16,7% -2,2% 0,0% -2,2%

Fig. 3. Numerical Results-Coordinate Search

For the Hook-Jeeves method we have the results presented
in Fig. 4. These were the worse results, where it was obtained
fewer solutions than with the previous implementation in [5].

Methods i Solution Approximation i
Feasible Infeasible
IP | EP | Good | Med | Total % Good | Med | Total %
N1 -2 0 -2 -11,1%] -1 0 -1 -5,6%
H) N2 -2 1 -1 -5,6% | -1 0 -1 -5,6%
NEB 2 2 4 222%] O 0 0 0,0%
NP -3 2 -1 -5,6% -1 0 -1 -5,6%
Total -5 5 0 -3 0 -3
% ]-56% 5,6% 0,0% -3,3% 0,0%  -3,3%

Fig. 4. Numerical Results- Hooke-Jeeves

Results obtained with Audet et. al. method are presented
in Fig. 5. Here were obtained better results than with the
previous implementation for the feasible approximation. For
the infeasible approximations it were obtained the same results
with every penalty function.

Solution Approximation
Methods Feasible Infeasible
IP | EP | Good | Med | Total % Good | Med | Total %
N1 4 1 5 27,8% 0 0 0 0,0%
AA N2 3 0 3 16,7% 0 0 0 0,0%
NEB 5 2 7 389%] O 0 0 0,0%
NP 2 1 3 16,7%] O 0 0 0,0%
Total 14 4 18 0 0 (1]
% |15,6% 4,4% 20,0% 0,0% 0,0% 0,0%

Fig. 5. Numerical Results- Audet et. al.

For the Nelder-Mead method the results presented in Fig. 6
were obtained. The conclusions are similar to the previous
case.

The results presented in Fig. 7 are for the Simplex Conver-
gent algorithm. Once again, the conclusions are similar to the
previous two cases.

For the aggregate constraints violation functions, there was
also an performance increase in the problems resolution.

Thus, starting with the N1 aggregate function , we have
the results in Fig. 8. We can observe the large increase in
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Methods i Solution Approximation i
Feasible Infeasible
IP | EP | Good | Med | Total % Good | Med | Total %
N1 5 0 5 27,8%] O 0 0 0.0%
NM N2 3 0 3 16.7% 0 0 0 0.0%
NEB 8 0 8 44,4% 0 0 0 0,0%
NP 1 2 3 16,7%] O 0 0 0,0%
Total| 17 2 19 0 0 0
% §18,9% 2,2% 21,1% 0,0% 0,0%  0.0%
Fig. 6. Numerical Results- Nelder-Mead
Methods i Solution Approximation i
Feasible Infeasible
IP | EP | Good | Med | Total % Good | Med | Total %
N1 3 2 5 27,8%] O 0 0 0,0%
e N2 5 1 6 33.3% 0 0 0 0.0%
NEB 5 0 5 27,8% 0 0 0 0,0%
NP 2 2 4 222%] O 0 0 0,0%
15 5 20 0 0 0
16,7% 5,6% 22,2% 0,0% 0,0% 0,0%

Fig. 7. Numerical Results- Simplex Convergent

the number of feasible solutions and also a small increase in
infeasible solutions.

For the N2 aggregate function, we have the results in Fig. 9.
The results are very similar to the previous case. Also, in both
cases the Hooke-Jeeves method was the only one where it was
not obtained better results.

The results for the NEB aggregate function, are presented
in Fig. 10. With this aggregate constraints violation function,
we obtained the better improvement of all results, particularly
in the feasible solutions.

The results for the NP aggregate function, are presented in
Fig. 11. With this aggregate constraints violation function, we
obtained the lowest improvement of all results. Once again
the poor performance of the Hooke-Jeeves resulted in a loss
of solutions.

Methods i Solution Approximation i
Feasible Infeasible
IP | EP Good | Med | Total % Good | Med | Total %
| CS | 4 0 4 22,2% 0 0 0 0,0%
| H) | -2 0 -2 -11,1% 0 1 5,6%
| AA [ N1 4 0 4 22,2% [¢] 0 0 0,0%
| NM | 5 0 5 27,8% [9] 0 [9] 0,0%
SC 3 0 3 16,7% 1 0 1 5,6%
Total 14 0 14 2 0 2
% |15,6% 0,0%  15,6% 2,2% 0,0% 2,2%

Fig. 8. Numerical Results-N1 aggregate function
Methods i Solution Approximation i
Feasible Infeasible
IP | EP | Good | Med | Total % Good | Med | Total %
| CS | 4 1 5 27,8% -1 0 -1 -5,6%
| H) | -2 0 -2 -11,1% -1 1 0 0,0%
| AA | N2 E] 0 3 16,7% 0 0 0 0,0%
| NM | 3 0 3 16,7% 1 0o 1 5,6%
SC D) 2 7 38,9% 2 1 3 16.7%
Total 13 3 16 1 2 3
% 14,4% 33% 17.8% 1,1% 22%  3,3%

Fig. 9. Numerical Results-N2 aggregate function
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Methods i Solution Approximation i
Feasible Infeasible
IP | EP Good | Med | Total Y% Good | Med | Total %
| CS | 6 0 6 33.3% 0 [¢] 0 0,0%
| HJ | 2 2 4 22,2% [¢] 0 0,0%
| AA | NEB 5 2 7 38,9% 0 [¢] 0 0,0%
| NM | 8 0 8 44,4% 0 Q0 0 0,0%
SC 5 0 5 27,8% 0 0 0 0,0%
Total 26 4 30 0 1] 0
% 28,9% 4,4% 33,3% 0,0% 0,0% 0,0%

Fig. 10. Numerical Results-NEB aggregate function
Methods i Solution Approximation i
Feasible Infeasible
IP | EP Good | Med | Total % Good | Med | Total %
| CS | 1 0 1 5,6% -1 [¢] -1 -5,6%
| H | -3 2 -1 -5,6% -1 2 1 5,6%
| AA | NP 2 1 3 16,7% 2 0 2 11,1%
| NM | 1 2 3 16,7% 1 1 2 11,1%
SC 2 2 4 22,2% 1 2 3 16,7%
Total 3 7 10 2 5 7
% 3,3% 7,8% 11,1% 2,2% 5,6% 7,8%

Fig. 11. Numerical Results-NP aggregate function

For these 18 test problems, from various tested methods
and constraints evaluation combination that that the best
performance improvement was the NM combined with NEB.
Besides being the combination with the best results, it was also
the one that had the better improvements, when compared with
our previous works.

VII. CONCLUSION

From the above presented numerical results it can be con-
cluded that it is possible to use and improve other direct search
methods and combining them with the filters method. Also, it
is possible to improve the proposed technique for constraint
violation functions aggregation.

In our particular case, it is predictable a significant improve-
ment of the previously obtained results with the creation of a
new objective function, by including a penalty term. This has
proved to be an essential fact to the improvement of the results.

Thus, the suggestions presented in [5] together with the
improvements proposed in this work, results in another alter-
native for solving constrained optimization problems without
using derivatives of the functions involved or their approxima-
tions.
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TABLE I
ALTERNATIVES TO AGGREGATE THE CONSTRAINT VIOLATION FUNCTIONS

[ Measure I h
q
Norm 1/4; Penalty N1 h(z) =|Cy (z)]l; = > max|[0, r; ()]
i=1
< 2
Norm 2 N2 || h(@) = 1Ok @)y = ) X {max0, ri (@)}
i=1
Extreme Barrier NEB h(z) = { +Ooo ig ﬁ ; g
Progressive Barrier
q
Classic Penalty NP h(z) = {max[r; (z), 0]}>
i=1
Static/Dynamic Penalty
227



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

ISSN: 1998-0140

TABLE II
CONSTRAINED OPTIMIZATION - FILTERS METHOD - PARAMETERS USED

kmaz = 40 — Maximum number of iterations in the external process;
p = 1 — Initial search step length;
T1 = |z, — 41| = 0.00001 — tolerance for the distance between two consecutive iterations;
T2 = |f (xy,) — f (zk11) | = 0.00001 —
Tolerance between 2 values of the objective function in two consecutive iterations;
hmazr = +00 — Maximal valor of constraints violation.

TABLE III
UNCONSTRAINED OPTIMIZATION - DIRECT SEARCH METHODS - USED PARAMETERS
Parameters Coordinate Hooke-Jeeves | Audet | Nelder-Mead | Simplex Conver-
Search gent
kmax 100 100 100 100 100
s 1 1 * 1 1
Sm * * 1,5 * 2
Sp & & 1 & *
Smin 103 103 103 * *
o * * * 1 1
J¢] * * * 0,5 0,5
T 10-° 10-° 107° 10-° 10-°
T, 105 10-5 10-5 105 10-5
Toar * * * 10-° 10-°
T’uol” sk £ 3 sk 10—5

kmax — Maximum number of iterations; s — Length of the initial step
sy, — Length of the initial mesh search step (Audet); s — Length of the initial poll step (Audet)
s — Length of the initial step; s, ;,, — Minimum value for the step length
a — Reflexion parameter (Nelder-Mead); 3 — Contraction parameter (Nelder-Mead)
~ — Expansion parameter (Nelder-Mead)
T1 = |zg, — Tht1 | — Tolerance for the distance between two consecutive iterations
or Tolerance for the distance between the last iteration and the latest iteration (Nelder-Mead)
T2 = |f (xvp) — f (mk+1) | — Tolerance for
the distance between two values of the objective function in successive iterations
Tyar — Tolerance to the variance of the objective function values in the vertices of the simplex (Simp. Conv.)

T,

wol,, — Tolerance to the normalized volume of the simplex
n

* — Parameter non used in the method
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